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Emergence of Planck’s Constant from Iterated Maps 

Ervin Goldfain 

Abstract 

Iterations of continuous maps are the simplest models of generic dynamical systems.  In particular, circle 

maps display several key properties of complex dynamics, such as phase-locking and the quasi-periodicity 

route to chaos. Our work points out that Planck’s constant may be derived from the scaling behavior of 

circle maps in the asymptotic limit.    

Key words: action quantization, Planck’s constant, iterated maps, circle maps, winding numbers.  

 

1. Introduction  

In is known that the probability amplitude for a quantum particle to start at the spacetime 

point ( , )a ax t  and end up at ( , )b bx t  is the sum of contributions [ ( )]x t  from each path, as 

described by    

 ( , ) [ ( )]
paths

K b a x t    (1) 

Every path in (1) contributes with a phase proportional to the classical action S , namely    

 [ ( )] . exp{( ) [ ( )]}ix t const S x t    (2) 

The classical approximation of (2) corresponds to the case S  , with the phase S  

being a large angle. Shifting a given path by a small amount x  leads to a negligible 

change of the action on the classical scale, yet it produces significant changes at a scale 
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commensurate with . At this scale, the exponential function in (2) undergoes fast 

fluctuations in sign and the overall contribution to (1) cancels out to zero. Neighboring 

paths in the proximity of the classical path ( )x t  reinforce each other by constructive 

interference. This is the path that minimizes the action functional ( 0S  ), a condition 

consistent with 0  .   

In the standard formulation of Quantum Mechanics, there are no additional fluctuations 

of the exponential besides the intrinsic oscillations discussed above. It is not 

unreasonable to assume that, on sufficiently short time scales, background fluctuations 

start to develop and act upon S  as periodic or non-periodic perturbations. The “noise-

like” nature of these perturbations follow from the inherent instability brought about by 

probing phenomena on short time scales.   

In light of these considerations, it makes sense to model the dynamics of the action S  

using the general theory of coupled oscillators. This is the object of the next section. 

2. Circle maps and the perturbed dynamics of classical action     

We assume that the background fluctuations are the “driver” oscillator with period ( )T B  

and frequency 1( ) ( )B T B  . Likewise, let the intrinsic fluctuations of S  arising from (2) 

be characterized by the period ( )T S  and  frequency 1( ) ( )S T S  . If the background and 

action fluctuations are uncoupled, the successive points of the Poincaré map are given by 

[1] 

 ( ( ))nS S t nT B    (3) 

 1 2n nS S       (4) 
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or 

 
1 2n nS S       (5) 

in which the “bare” winding number is the ratio 

 
( ) ( )

( ) ( )

T S B

T B S




     (6) 

When there is coupling between background and action fluctuations, the map (5) becomes 

the sine circle map [1-2] 

 1 2 sin ( )n n nS S K S       (7) 

which can be alternatively presented as  

 1 ( )sin (2 )
2

n n n

K
  


     (8) 

Here, nN  is the iteration index, K  denotes the coupling strength and 

 2n nS    (9) 

The winding number of the map (7) or (8) is defined as 

 0 0( ) lim lim
2

n n

n n

S S
W K

n n

 

 

 
    (10) 

and characterizes the average number of 2  rotations per iteration [2]. 
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It is important to note that (6) is different from (10) when 0K  . By contrast, 

( 0)W K      when there is no coupling between background and action fluctuations, in 

which case (0)W  denotes the angular increment at each iteration step n .  

Two scenarios of interest exist concerning the behavior of (10) when 0 1K  , namely [1-

2]: 

a) When (10) is a rational number, the motion corresponds to stable cycles in a finite 

range of bare winding numbers 0 1 , 

b) Stable quasi-periodic orbits develop when (10) is an irrational number and the 

motion occurs on a Cantor set. Moreover, if the quasi-periodic orbits have winding 

numbers (10) that reside on the Cantor set at 1K  , these orbits necessarily transition 

to chaos for 1K  .  

Analysis shows that the transition to chaos in either (7) or (8) relates to a sequence of 

winding numbers  nW  that converges geometrically according to  

 
n n

nW W c W c 
 

      (11) 

where the convergence rate is determined by the golden mean W  via  

 
2

W


   ,  
5 1

2
W


     (12) 

A similar scaling behavior holds for the sequence of bare winding numbers  n  and one 

finds, for a given 1K  ,  
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 lim ( )n
n

K W


     (13) 

3. Emergence of action quantization: two scenarios  

3.1 ) Consider first the case where 1 n   and the coupling strength is nearly-vanishing  

1K  . By (7) and (13) we obtain the first interpretation of action quantization in the 

form 

 1, 1 2n n n nS S S W       (14) 

Note that the condition 1K   is consistent with the separation of the high and low 

energy scales in effective Quantum Field Theory [3]. 

3.2) Next, consider again the case 1 n   and refer to (10)-(12). The second 

interpretation of action quantization assumes the form 

 ,0 0 (2 )n nS S S n W      (15) 

In closing, we bring up a couple of observations: 

a) It is apparent from (6) that 0  when ( ) ( )T B T S . In this case, the background 

perturbation becomes insignificant and one is led to the action invariance of classical 

mechanics ( 1n nS S   ). 

b) According to (14) and (15), Planck’s constant emerges as a fixed number related to 

the golden-mean. The precise numerical value of this constant is irrelevant as 

Planck’s constant can be set to 1  in natural units.  
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